Question 1
Ra's Al Gamal

Recall the ElGamal scheme from lecture:

- KeyGen() = (b, B = g^b mod p)
- Enc(B, M) = (C_1 = g^r mod p, C_2 = B^r \times M mod p)

Q1.1 Is the ciphertext (C_1, C_2) decryptable by someone who knows the private key b? If you answer yes, provide a decryption formula. You may use C_1, C_2, b, and any public values.

○ Yes ○ No

Solution: The decryption formula is M = C_1^{-b} \times C_2.

Q1.2 Consider an adversary that can efficiently break the discrete log problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

○ Yes ○ No

Solution: An adversary that can break the discrete log problem can recover r from C_1 = g^r or b from B = g^b, so they can compute g^{br} and recover the original message.

Q1.3 Consider an adversary that can efficiently break the Diffie-Hellman problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

○ Yes ○ No

Solution: An adversary that can break the Diffie-Hellman problem can recover g^{br} from C_1 = g^r and B = g^b, so they can recover the original message.
Question 2 Dual Asymmetry

Alice wants to send two messages M_1 and M_2 to Bob, but they do not share a symmetric key.

Assume that p is a large prime and that g is a generator mod p, like in ElGamal. Assume that all computations are done modulo p in Scheme A.

Q2.1 Scheme A: Bob publishes his public key $B = g^b$. Alice randomly selects r from 0 to $p - 2$. Alice then sends the ciphertext $(R, S_1, S_2) = (g^r, M_1 \times B^r, M_2 \times B^{r+1})$.

Select the correct decryption scheme for M_1:

- $R^{-b} \times S_1$
- $R^b \times S_1$
- $B^{-b} \times S_1$
- $B^b \times S_1$

Solution:

$S_1 = M_1 \times B^r$ Given in the question
$S_1 = M_1 \times g^{br}$ Substitute $B = g^b$
$M_1 = g^{-br} \times S_1$ Multiply both sides by g^{-br}
$M_1 = R^{-b} \times S_1$ Substitute $R = g^r$

Q2.2 Select the correct decryption scheme for M_2:

- $B^{-1} \times R^{-b} \times S_2$
- $B \times R^{-b} \times S_2$
- $B^{-1} \times R^b \times S_2$
- $B^{-1} \times R \times S_2$

Solution:

$S_2 = M_2 \times B^{r+1}$ Given in the question
$S_2 = M_2 \times g^{b(r+1)}$ Substitute $B = g^b$
$S_2 = M_2 \times g^{b+r}$ Exponentiation properties
$M_2 = g^{-br-b} \times S_2$ Multiply both sides by g^{-br-b}
$M_2 = g^{-br} \times g^{-b} \times S_2$ Exponentiation properties
$M_2 = R^{-b} \times B^{-1} \times S_2$ Substitute $B = g^b$ and $R = g^r$
$M_2 = B^{-1} \times R^{-b} \times S_2$ Rearrange terms
Q2.3 Is Scheme A IND-CPA secure? If it is secure, briefly explain why (1 sentence). If it is not secure, briefly describe how you can learn something about the messages.

Clarification during exam: For Scheme A, in the IND-CPA game, assume that a single plaintext is composed of two parts, M_1 and M_2.

- [] Secure
- [x] Not secure

Solution: This scheme is not IND-CPA secure. Eve can determine if $M_1 = M_2$ by checking if $S_2 = S_1 \times B$.

Q2.4 Scheme B: Alice randomly chooses two 128-bit keys K_1 and K_2. Alice encrypts K_1 and K_2 with Bob’s public key using RSA (with OAEP padding) then encrypts both messages with AES-CTR using K_1 and K_2. The ciphertext is RSA(PK_{Bob}, $K_1||K_2$), Enc(K_1, M_1), Enc(K_2, M_2).

Which of the following is required for Scheme B to be IND-CPA secure? Select all that apply.

- [] K_1 and K_2 must be different
- [x] A different IV is used each time in AES-CTR
- [] M_1 and M_2 must be different messages
- [] M_1 and M_2 must be a multiple of the AES block size
- [] M_1 and M_2 must be less than 128 bits long
- [] None of the above

Solution:

A: False. Because Enc is an IND-CPA secure encryption algorithm, the key does not need to be changed between two encryptions.

B: True. AES-CTR requires that a unique nonce is used for each encryption, or it loses its confidentiality guarantees.

C: False. A secure encryption algorithm would not leak the fact that two messages are the same.

D: AES-CTR can encrypt any length of plaintext. Padding is not needed in AES-CTR.

E: AES-CTR can encrypt any length of plaintext.