Popa & Kao Spring 2023

CS 161 Computer Security

Discussion 6

Question 1 Ra's Al Gamal

()

Recall the ElGamal scheme from lecture:

- KeyGen() = $(b, B = g^b \mod p)$
- $\operatorname{Enc}(B, M) = (C_1 = g^r \bmod p, C_2 = B^r \times M \bmod p)$
- Q1.1 Is the ciphertext (C_1, C_2) decryptable by someone who knows the private key b? If you answer yes, provide a decryption formula. You may use C_1 , C_2 , b, and any public values.

Yes

O No

Solution: The decryption formula is $M = C_1^{-b} \times C_2$.

Q1.2 Consider an adversary that can efficiently break the discrete log problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

Yes

O No

Solution: An adversary that can break the discrete log problem can recover r from $C_1 = g^r$ or b from $B = g^b$, so they can compute g^{br} and recover the original message.

Q1.3 Consider an adversary that can efficiently break the Diffie-Hellman problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

Yes

O No

Solution: An adversary that can break the Diffie-Hellman problem can recover g^{br} from $C_1 = g^r$ and $B = g^b$, so they can recover the original message.

Question 2 Dual Asymmetry

()

Alice wants to send two messages M_1 and M_2 to Bob, but they do not share a symmetric key.

Assume that p is a large prime and that g is a generator mod p, like in ElGamal. Assume that all computations are done modulo p in Scheme A.

Q2.1 Scheme A: Bob publishes his public key $B = g^b$. Alice randomly selects r from 0 to p - 2. Alice then sends the ciphertext $(R, S_1, S_2) = (g^r, M_1 \times B^r, M_2 \times B^{r+1})$.

Select the correct decryption scheme for M_1 :

$$lacksquare$$
 $R^{-b} \times S_1$

$$O B^{-b} \times S_1$$

$$\bigcirc R^b \times S_1$$

O
$$B^b \times S_1$$

Solution:

$$S_1 = M_1 \times B^r$$

$$S_1 = M_1 \times q^{br}$$

$$M_1 = q^{-br} \times S_1$$

$$M_1 = R^{-b} \times S_1$$

Given in the question

Substitute
$$B = g^b$$

Multiply both sides by g^{-br}

Substitute
$$R = g^r$$

Q2.2 Select the correct decryption scheme for M_2 :

$$\bullet \quad B^{-1} \times R^{-b} \times S_2$$

$$O B^{-1} \times R^b \times S_2$$

O
$$B \times R^{-b} \times S_2$$

O
$$B^{-1} \times R \times S_2$$

Solution:

$$S_2 = M_2 \times B^{r+1}$$

$$S_2 = M_2 \times g^{b(r+1)}$$

$$S_2 = M_2 \times g^{br+b}$$

$$M_2 = q^{-br-b} \times S_2$$

$$M_2 = g^{-br} \times g^{-b} \times S_2$$

$$M_2 = R^{-b} \times B^{-1} \times S_2$$

$$M_2 = B^{-1} \times R^{-b} \times S_2$$

Given in the question

Substitute
$$B = q^b$$

Exponentiation properties

Multiply both sides by g^{-br-b}

Exponentiation properties

Substitute $B = g^b$ and $R = g^r$

Rearrange terms

Q2.3	Is Scheme A IND-CPA secure? If it is secure, briefly explain why (1 sentence). If it is not secure briefly describe how you can learn something about the messages.
	Clarification during exam: For Scheme A, in the IND-CPA game, assume that a single plaintext is composed of two parts, M_1 and M_2 .
	O Secure Not secure
	Solution: This scheme is not IND-CPA secure. Eve can determine if $M_1=M_2$ by checking if $S_2=S_1\times B$.
Q2.4	Scheme B: Alice randomly chooses two 128-bit keys K_1 and K_2 . Alice encrypts K_1 and K_2 with Bob's public key using RSA (with OAEP padding) then encrypts both messages with AES-CTI using K_1 and K_2 . The ciphertext is RSA(PK _{Bob} , $K_1 K_2$), Enc(K_1 , M_1), Enc(K_2 , M_2).
	Which of the following is required for Scheme B to be IND-CPA secure? Select all that apply.
	\square K_1 and K_2 must be different
	A different IV is used each time in AES-CTR
	$\ \square \ M_1$ and M_2 must be different messages
	\square M_1 and M_2 must be a multiple of the AES block size
	$\ \square$ M_1 and M_2 must be less than 128 bits long
	☐ None of the above
	Solution:
	A: False. Because Enc is an IND-CPA secure encryption algorithm, the key does not need to be changed between two encryptions.
	B: True. AES-CTR requires that a unique nonce is used for each encryption, or it loses its confidentiality guarantees.
	C: False. A secure encryption algorithm would not leak the fact that two messages are the same.
	D: AES-CTR can encrypt any length of plaintext. Padding is not needed in AES-CTR.
	E: AES-CTR can encrypt any length of plaintext.